2026/02/11 23:32 1/6 Threads

Threads

Una hebra es una unidad basica de utilizacién de la CPU; comprende un ID de hebra, un contador de
programa, un conjunto de registros y una pila. Comparte con otras hebras que pertenecen al mismo
proceso la seccion de cddigo, la seccion de datos y otros recursos del sistema operativo, como los
archivos abiertos y las sefiales. Un proceso tradicional (o proceso pesado) tiene una sola hebra de
control. Si un proceso tiene, por el contrario, multiples hebras de control, puede realizar mas de una
tarea a la vez.

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —— «—— threac

single-threaded process multithreaded process

Diferencia entre un proceso tradicional monohebra y un proceso
multihebra

Muchas aplicaciones que se ejecutan en las computadoras modernas de escritorio son multihebra.
Normalmente, una aplicacion se implementa como un proceso propio con varias hebras de control.
Por ejemplo, un explorador web puede tener una hebra para mostrar imagenes o texto mientras que
otra hebra recupera datos de la red. Un procesador de textos puede tener una hebra para mostrar
graficos, otra hebra para responder a las pulsaciones de teclado del usuario y una tercera hebra para
el corrector ortografico y gramatical que se ejecuta en segundo plano. En determinadas situaciones,
una misma aplicacion puede tener que realizar varias tareas similares. Por ejemplo, un servidor web
acepta solicitudes de los clientes que piden paginas web, imagenes, sonido, etc. Un servidor web
sometido a una gran carga puede tener varios (quiza, miles) de clientes accediendo de forma
concurrente a él. Si el servidor web funcionara corno un proceso tradicional de una sola hebra, sélo
podria dar servicio a un cliente cada vez y la cantidad de tiempo que un cliente podria tener que
esperar para que su solicitud fuera servida podria ser enorme.

Una solucion es que el servidor funcione como un solo proceso de aceptacion de solicitudes. Cuando
el servidor recibe una solicitud, crea otro proceso para dar servicio a dicha solicitud. De hecho, este
método de creacidn de procesos era habitual antes de que las hebras se popularizaran. Lla creacién

Wiki Sistemas - http://wiki.educabit.ar/

Last update: 2025/09/11 22:48 so_procthreads http://wiki.educabit.ar/doku.php?id=so_procthreads

de procesos lleva tiempo y hace un uso intensivo de los recursos. Si el huevo proceso va a realizar las
mismas tareas que los procesos existentes, ;por qué realizar todo ese trabajo adicional?
Generalmente, es mas eficiente usar un proceso que contenga multiples hebras. Segin este método,
lo que se hace es dividir en multiples hebras el proceso servidor web. El servidor crea una hebra
especifica para escuchar las solicitudes de cliente y cuando llega una solicitud, en lugar de crear otro
proceso, el servidor crea otra hebra para dar servicio a la solicitud.

Las hebras también juegan un papel importante en los sistemas de llamada a procedimientos
remotos (RPC). Las RPC permiten la comunicacion entre procesos proporcionando un mecanismo de
comunicacién similar a las llamadas a funciones o procedimientos ordinarias. Normalmente, los
servidores RPC son multihebra. Cuando un servidor recibe un mensaje, sirve el mensaje usando una
hebra especifica. Esto permite al servidor dar servicio a varias solicitudes concurrentes. Los sistemas
RMI de Java trabajan de forma similar. Por Gltimo, ahora muchos kernel de sistemas operativos son
multihebra; hay varias hebras operando en el kernel y cada hebra-realiza una tarea especifica, tal
como gestionar dispositivos o tratar interrupciones. Por ejemplo, Solaris crea un conjunto de hebras
en el kernel especificamente para el tratamiento de interrupciones; Linux utiliza una hebra del kernel
para gestionar la cantidad de memoria libre en el sistema.

Ventajas

Las ventajas de la programacion multihebra pueden dividirse en cuatro categorias principales:

e Capacidad de respuesta. El uso de miultiples hebras en una aplicacién interactiva permite
que un programa continle ejecutandose incluso aunque parte de él esté bloqueado o
realizando una operacion muy larga, lo que incrementa la capacidad de respuesta al usuario.
Por ejemplo, un explorador web multihebra permite la interaccién del usuario a través de una
hebra mientras que en otra hebra se esta cargando una imagen.

e Comparticion de recursos. Por omision, las hebras comparten la memoria y los recursos del
proceso al que pertenecen. La ventaja de compartir el cédigo y los datos es que permite que
una aplicacién tenga varias hebras de actividad diferentes dentro del mismo espacio de
direcciones.

» Economia. La asignacion de memoria y recursos para la creaciéon de procesos es costosa. Dado
que las hebras comparten recursos del proceso al que pertenecen, es mas econémico crear y
realizar cambios de contexto entre unas y otras hebras. Puede ser dificil determinar
empiricamente la diferencia en la carga de adicional de trabajo administrativo pero, en general,
se consume mucho mas tiempo en crear y gestionar los procesos que las hebras. Por ejemplo,
en Solaris, crear un proceso es treinta veces mas lento que crear una hebra, y el cambio de
contexto es aproximadamente cinco veces mas lento.

« Utilizacion sobre arquitecturas multiprocesador. Las ventajas de, usar configuraciones
multihebra pueden verse incrementadas significativamente en una arquitectura
multiprocesador, donde las hebras pueden ejecutarse en paralelo en los diferentes
procesadores. Un proceso monohebra soélo se puede ejecutar en una CPU, independientemente
de cuantas haya disponibles. Los mecanismos multihebra en una maquina con varias CPU
incrementan el grado de concurrencia.

Modelos multihebra

http://wiki.educabit.ar/ Printed on 2026/02/11 23:32

2026/02/11 23:32 3/6 Threads

Desde el punto de vista practico, el soporte para hebras puede proporcionarse en el nivel de usuario
(para las hebras de usuario) o por parte del kernel (para las hebras del kernel). El soporte para las
hebras de usuario se proporciona por encima del kernel y las hebras se gestionan sin soporte del
mismo, mientras que el sistema operativo soporta y gestiona directamente las hebras del kernel. Casi
todos los sistemas operativos actuales, incluyendo Windows 7, Linux. Mac OS x, Solaris y Tru64 UNIX
(antes Digital UNIX) soportan las hebras de kernel. En dltimo término, debe existir una relacién entras
las hebras de usuario y las del kernel; vamos a ver tres formas de establecer esta relacién.

Modelo muchos-a-uno

El modelo muchos-a-uno asigna multiples hebras del nivel de usuario a una hebra del kernel. La
gestion de hebras se hace mediante la biblioteca de hebras en el espacio de usuario, por lo que
resulta eficiente, pero el proceso completo se bloquea si una hebra realiza URa llamada bloqueante al
sistema. También, dado que s6lo una hebra puede acceder al kernel cada vez, no podran ejecutarse
varias hebras en paralelo sobre multiples procesadores. El sistema de hebras Green, una biblioteca
de hebras disponibles en Solaris, usa este modelo, asi como GNU Portable Threads.

{ !
+—— user threac
\ >

-

k |+ kemel thread

Modelo uno-a-uno

El modelo uno-a-uno asigna cada hebra de usuario a una hebra del kernel. Proporciona una mayor
concurrencia que el modelo muchos-a-uno, permitiendo que se ejecute otra hebra mientras una hebra
hace una llamada blogueante al sistema; también permite que se ejecuten mdltiples hebras en
paralelo sobre varios procesadores. El Unico inconveniente de este modelo es que crear una hebra de
usuario requiere crear la correspondiente hebra del kernel, Dado que la carga de trabajo
administrativa para la creacién de hebras del kernel puede repercutir en el rendimiento de una
aplicacién, la mayoria de las implementaciones de este modelo restringen el nimero de hebras
soportadas por el sistema. Linux, junto con la familia de sistemas operativos Windows (incluyendo
Windows 95, 98, NT, 2000, XP y 7), implementan el modelo uno-a-uno.

Wiki Sistemas - http://wiki.educabit.ar/

Last update: 2025/09/11 22:48 so_procthreads http://wiki.educabit.ar/doku.php?id=so_procthreads

SRR
fJI:- ka, J\ L I*—kernel threac

x/f

+——— |Iser thread

I/_r

Modelo muchos-a-muchos

El modelo muchos-a-muchos multiplexa muchas hebras de usuario sobre un nimero menor o igual de
hebras del kemeL El nimero de hebras del kemel puede ser especifico de una determinada aplicacién
o de una determinada maquina (pueden asignarse mas hebras del kemel a una aplicacién en un
sistema multiprocesador que en uno de un solo procesador). Mientras que el modelo muchos-a-uno
permite al desarrollador crear tantas hebras de usuario como desee, no se consigue una concurrencia
real, ya que el kernel sélo puede planificar la ejecucién de una hebra cada vez. El modelo uno-a-uno
permite una mayor concurrencia, pero el desarrollador debe tener cuidado de no crear demasiadas
hebras dentro de una aplicacion (y, en algunos casos, el nimero de hebras que pueda crear estard
limitado). El modelo muchos-a-muchos no sufre ninguno de estos inconvenientes. Los desarrolladores
pueden crear tantas hebras de usuario como sean necesarias y las correspondientes hebras del
kemel pueden ejecutarse en paralelo en un multiprocesador. Asimismo, cuando una hebra realiza una
llamada bloqueante al sistema, el kemel puede planificar otra hebra para su ejecucion.

¢
\'

+— user threac

k> «— kernel thread

Una popular variacién del modelo muchos-a-muchos multiplexa muchas hebras del nivel de usuario
sobre un nimero menor o igual de hebras del kernel, pero también permite acoplar una hebra de
usuario a una hebra del kernel. Algunos sistemas operativos como IRIX, HP-UX y Tru64 UNIX emplean
esta variante, que algunas veces se denomina modelo de dos niveles. El sistema operativo Solaris

http://wiki.educabit.ar/ Printed on 2026/02/11 23:32

2026/02/11 23:32 5/6 Threads

permitia el uso del modelo de dos niveles en las versiones anteriores a Solaris 9. Sin embargo, a
partir de Solaris 9, este sistema emplea el modelo uno-a-uno.

Bibliotecas de hebras

Una biblioteca de hebras proporciona al programador una API para crear y gestionar hebras. Existen
dos formas principales de implementar una biblioteca de hebras. El primer método consiste en
proporcionar una biblioteca enteramente en el espacio de usuario, sin ningun soporte del kernel.
Todas las estructuras de datos y el cédigo de la biblioteca se encuentran en el espacio de usuario.
Esto significa que invocar a una funcién de la biblioteca es como realizar una llamada a una funcién
local en el espacio de usuario y no una llamada. al sistema.

El segundo método consiste en implementar una biblioteca en el nivel del kernel, soportada
directamente por el sistema operativo. En este caso, el cédigo y las estructuras de datos de la
biblioteca se encuentran en el espacio del kernel. Invocar una funcién en la APl de la biblioteca
normalmente da lugar a que se produzca una llamada al sistema dirigida al kernel.

Las tres principales bibliotecas de hebras actualmente en uso son: (1) POSIX Pthreads, (2) Win32 y (3)
Java. Pthreads. la extension de hebras del estandar POSIX, puede proporcionarse como biblioteca del
nivel de usuario o del nivel de kernel. La biblioteca de hebras de Win32 es una biblioteca del nivel de
kernel disponible en los sistemas Windows .. La API de hebras Java permite crear y gestionar
directamente hebras en los programas Java. Sin embargo, puesto que en la mayoria de los casos la
IVM se ejecuta por encima del sistema operativo del host, la APl de hebras Java se implementa
habitualmente usando una biblioteca de hebras disponible en el sistema host. Esto significa que,
normalmente, en los sistemas Windows, las hebras Java se implementan usando la API de Win32,
mientras que en los sistemas Linux se suelen implementar empleando Pthreads.

Diseflaremos un programa multihebra que calcule la sumatoria de un nimero entero no negativo en
una hebra especifica empleando la muy conocida funcién:

Sum=y (i=0)"Nii

Por ejemplo, si N fuera igual a 5, esta funcion representaria la sumatoria desde 0 hasta 5, que es 15.
Cada uno de los tres programas se ejecutara especificando el limite superior de la sumatoria a través
de la linea de comandos; por tanto, si el usuario escribe 8, a la salida se obtendra la suma de los
valores enteros comprendidos entre 0 y 8.

Pthreads

Pthreads se basa en el estandar POSIX (IEEE 1003.1c) que define una API para la creacién y
sincronizacion de hebras. Se trata de una especificacidon para el comportamiento de las hebras, no de
una implementacién. Los disefiadores de sistemas operativos pueden implementar la especificacion
de la forma que deseen. Hay muchos sistemas que implementan la especificacién Pthreads,
incluyendo Solaris, Linux; Mac OS X v Tru64 UNIX. También hay disponibles implementaciones de libre
distribucidn para diversos sistemas operativos Windows. El programa C mostrado ilustra la API basica
de Pthreads mediante un ejemplo de creacidn de un programa multihebra que calcula la sumatoria de
un entero no negativo en una hebra especifica. En un programa Pthreads, las diferentes hebras
inician su ejecucién en una funcién especifica. En la Figura de abajo, se trata de la funcién runner().
Cuando este programa se inicia, da comienzo una sola hebra de control en main (). Después de

Wiki Sistemas - http://wiki.educabit.ar/

Last update: 2025/09/11 22:48 so_procthreads http://wiki.educabit.ar/doku.php?id=so_procthreads

algunas inicializaciones, main () crea una segunda hebra que comienza en la funcién runner(). Ambas
hebras comparten la variable global sum Analicemos mas despacio este programa. Todos los
programas Pthreads deben incluir el archivo de cabecera pthread.h. La instruccién pthread_t tid
declara el identificador de la hebra que se va a crear, Cada hebra tiene un conjunto de atributos, que
incluye el tamafo de la pila y la informacion de planificacion. La declaracion pthread_attr t attr
representa los atributos de la hebra; establecemos los atributos en la llamada a la funcion
pthread_attr_init (&attr). Dado que no definimos explicitamente ningun atributo, se usan los atributos
predeterminados. Para crear otra hebra se usa la llamada a la funcién pthread create(). Ademas de
pasar el identificador de la hebra y-los atributos de la misma, también pasamos el nombre de la
funcién en la que la nueva hebra comenzara la ejecucién, que en este caso es la funcién runner() .Por
ultimo, pasamos el parametro entero que se proporciond en la linea de comandos, argv (1].

En este punto, el programa tiene dos hebras: la hebra inicial (o0 padre) en main () y la hebra de la
sumatoria (o0 hijo) que realiza la operacién de suma en la funcién runner(). Después de crear la hebra
sumatoria, la hebra padre esperara a que se complete llamando a la funcién pthread_join. La hebra
sumatoria se completara cuando llame a la funcién pthread_exit() Una vez que la hebra sumatoria ha
vuelto, la hebra padre presenta a la salida el valor de la variable compartida sum,

From:
http://wiki.educabit.ar/ - Wiki Sistemas

Permanent link:
http://wiki.educabit.ar/doku.php?id=so_procthreads

Last update: 2025/09/11 22:48

http://wiki.educabit.ar/ Printed on 2026/02/11 23:32

http://wiki.educabit.ar/
http://wiki.educabit.ar/doku.php?id=so_procthreads

	Threads
	Ventajas
	Modelos multihebra
	Modelo muchos-a-uno
	Modelo uno-a-uno
	Modelo muchos-a-muchos
	Bibliotecas de hebras
	Pthreads

