2026/02/11 23:26 1/5 Planificadores

Planificadores

Durante su tiempo de vida, los procesos se mueven entre las diversas colas de planificacion. El
sistema operativo, como parte de la tarea de planificacion, debe seleccionar de alguna manera los
procesos que se encuentran en estas colas. El proceso de seleccidn se realiza mediante un
planificador apropiado.

A menudo, en un sistema de procesamiento por lotes, se envian mas procesos de los que pueden ser
ejecutados de forma inmediata. Estos procesos se guardan encola en un dispositivo de
almacenamiento masivo (normalmente, un disco), donde se mantienen para su posterior ejecucion. El
planificador a largo plazo o planificador de trabajos selecciona procesos de esta cola y los carga en
memoria para su ejecucion. El planificador a corto plazo o planificador de la CPU selecciona de entre
los procesos que ya estan preparados para ser ejecutados y asigna la CPU a uno de ellos.

La principal diferencia entre estos dos planificadores se encuentra en la frecuencia de ejecucion. El
planificador a corto plazo debe seleccionar un nuevo proceso para la CPU frecuentemente. Un
proceso puede ejecutarse sélo durante unos pocos milisegundos antes de tener que esperar por una
solicitud de E/S. Normalmente, el planificador a corto plazo se ejecuta al menos una vez cada 100
milisegundos. Debido al poco tiempo que hay entre ejecuciones, el planificador a corto plazo debe ser
rapido. Si tarda 10 milisegundos en decidir ejecutar un proceso durante 100 milisegundos, entonces
el 10/(100 + 10) = 9 por ciento del tiempo de CPU se esta usando (perdiendo) simplemente para
planificar el trabajo.

El planificador a largo plazo se ejecuta mucho menos frecuentemente; pueden pasar minutos entre la
creacion de un nuevo proceso y el siguiente. El planificador a largo plazo controla el grado de
multiprogramacion (el nimero de procesos en memoria). Si el grado de multiprogramacién es
estable, entonces la tasa promedio de creacidn de procesos debe ser igual a la tasa promedio de
salida de procesos del sistema. Por tanto, el planificador a largo plazo puede tener que invocarse sélo
cuando un proceso abandona el sistema. Puesto que el intervalo entre ejecuciones es mas largo, el
planificador a largo plazo puede permitirse emplear mas tiempo en decidir qué proceso debe
seleccionarse para ser ejecutado.

Es importante que el planificador a largo plazo haga una eleccidn cuidadosa. En general, la mayoria
de los procesos pueden describirse como limitados por la E/S o limitados por la CPU. Un proceso
limitado por E/S es aquel que invierte la mayor parte de su tiempo en operaciones de E/S en lugar de
en realizar calculos. Por el contrario, un proceso limitado por la CPU genera solicitudes de E/S con
poca frecuencia, usando la mayor parte de su tiempo en realizar calculos. Es importante que el
planificador a largo plazo seleccione una adecuada mezcla de procesos, equilibrando los procesos
limitados por E/S y los procesos limitados por la CPU. Si todos los procesos son limitados por la E/S, la
cola de procesos preparados casi siempre estara vacia y el planificador a corto plazo tendra poco que
hacer. Si todos los procesos son limitados por la CPU, la cola de espera de E/S casi siempre estara
vacia, los dispositivos apenas se usaran, y de nuevo el sistema se desequilibrara. Para obtener un
mejor rendimiento, el sistema dispondra entonces de una combinacién equilibrada de procesos
limitados por la CPU y de procesos limitados por E/S.

En algunos sistemas, el planificador a largo plazo puede no existir o ser minimo. Por ejemplo, los
sistemas de tiempo compartido, tales como UNIX y los sistemas Microsoft Windows, a menudo no
disponen de planificador a largo plazo, sino que simplemente ponen todos los procesos nuevos en
memoria para que los gestione el planificador a corto plazo. La estabilidad de estos sistemas depende
bien de una limitacion fisica (tal como el nimero de terminales disponibles), bien de la propia

Wiki Sistemas - http://wiki.educabit.ar/

Last update: 2025/09/11 22:48 so_procplani http://wiki.educabit.ar/doku.php?id=so_procplani

naturaleza autoajustable de las personas que utilizan el sistema. Si el rendimiento desciende a
niveles inaceptables en un sistema multiusuario, algunos usuarios simplemente lo abandonaran.

Algunos sistemas operativos, como los sistemas de tiempo compartido, pueden introducir un nivel
intermedio adicional de planificacion. La idea clave subyacente a un planificador a medio plazo es
gue, en ocasiones, puede ser ventajoso eliminar procesos de la memoria (con lo que dejan de
contender por la CPU) y reducir asi el grado de multiprogramacion. Después, el proceso puede volver
a cargarse en memoria, continuando su ejecucion en el punto en que se interrumpid. Este esquema
se denomina intercambio. El planificador a medio plazo descarga y luego vuelve a cargar el proceso.
El intercambio puede ser necesario para mejorar la mezcla de procesos o porque un cambio en los
requisitos de memoria haya hecho que se sobrepase la memoria disponible, requiriendo que se libere
memoria.

Cambio de contexto

Las interrupciones hacen que el sistema operativo obligue a la CPU a abandonar su tarea actual, para
ejecutar una rutina del kernel. Estos sucesos se producen con frecuencia en los sistemas de proposito
general. Cuando se produce una interrupcion el sistema tiene que guardar el contexto actual del
proceso que se estd ejecutando en la CPU, de modo que pueda restaurar dicho contexto cuando su
procesamiento concluya, suspendiendo el proceso y reanudandolo después. El contexto se almacena
en el PCB del proceso e incluye el valor de los registros de la CPU, el estado del proceso vy la
informacion de gestion de memoria. Es decir, realizamos una salvaguarda del estado actual de la
CPU, en modo kernel , 0 en modo usuario, y una restauracion del estado para reanudar las
operaciones.

La conmutacién de la CPU a otro proceso requiere una salvaguarda del estado del proceso actual y
una restauracién del estado de otro proceso diferente. Esta tarea se conoce como cambio de
contexto. Cuando se produce un cambio de contexto, el kernel guarda el contexto del proceso
antiguo en su PCB y carga el contexto almacenado del nuevo proceso que se ha decidido ejecutar.

El tiempo dedicado al cambio de contexto es tiempo desperdiciado, dado que el sistema no realiza
ningun trabajo Util durante la conmutacién. La velocidad del cambio de contexto varia de una
maquina a otra, dependiendo de la velocidad de memoria, del nimero de registros que tengan que
copiarse y de la existencia de instrucciones especiales (como por ejemplo, una instruccién para
cargar o almacenar todos los registros). Las velocidades tipicas son del orden de unos pocos
milisegundos.

El tiempo empleado en los cambios de contexto depende fundamentalmente del soporte hardware.
Por ejemplo, algunos procesadores (como Ultra\SPARC de Sun) proporcionan multiples conjuntos de
registros. En este caso, un cambio de contexto simplemente requiere cambiar el puntero al conjunto
actual de registros. Por supuesto, si hay mas procesos activos que conjuntos de registros, el sistema
recurrira a copiar los datos de los registros en y desde memoria, al igual que antes. También, cuanto
mas complejo es el sistema operativo, mas trabajo debe realizar durante un cambio de contexto.
Existen técnicas avanzadas de gestién de memoria pueden requerir que con cada contexto se
intercambien datos adicionales. Por ejemplo, el espacio de direcciones del proceso actual debe
preservarse en el momento de preparar para su uso el espacio de la siguiente tarea. Como se
conserva el espacio de memoria y qué cantidad de trabajo es necesario para conservar lo depende
del método de gestién de memoria utilizado por el sistema operativo.

http://wiki.educabit.ar/ Printed on 2026/02/11 23:26

2026/02/11 23:26 3/5 Planificadores

Operaciones sobre los procesos

En la mayoria de los sistemas, los procesos pueden ejecutarse de forma concurrente y pueden
crearse y eliminarse dinamicamente. Por tanto, estos sistemas deben proporcionar un mecanismo
para la creaciéon y terminacién de procesos.

Creacion de procesos

Un proceso puede crear otros varios procesos nuevos mientras se ejecuta; para ello se utiliza una
llamada al sistema especifica para la creacion de procesos. El proceso creador se denomina proceso
padre y los nuevos procesos son los hijos de dicho proceso. Cada uno de estos procesos nuevos
puede a su vez crear otros procesos, dando lugar a un arbol de procesos.

La mayoria de los sistemas operativos (incluyendo UNIX y la familia Windows de sistemas operativos)
identifican los procesos mediante un identificador de proceso univoco o pid (process identifier), que
normalmente es un nimero entero.

En UNIX, puede obtenerse un listado de los procesos usando el comando ps. Por ejemplo, el comando
ps -el proporciona informacidn completa sobre todos los procesos que estan activos actualmente en
el sistema. Resulta facil construir un arbol de procesos, trazando recursivamente los procesos padre
hasta llegar al proceso init.

En general, un proceso necesitara ciertos recursos (tiempo de CPU, memoria, archivos, dispositivos
de E/S) para llevar a cabo sus tareas. Cuando un proceso crea un subproceso, dicho subproceso
puede obtener sus recursos directamente del sistema operativo o puede estar restringido a un
subconjunto de los recursos del proceso padre. El padre puede tener que repartir sus recursos entre
sus hijos, o puede compartir algunos recursos (como la memoria o los archivos) con alguno de sus
hijos. Restringir un proceso hijo a un subconjunto de los recursos del padre evita que un proceso
pueda sobrecargar el sistema creando demasiados subprocesos.

Ademas de los diversos recursos fisicos y l6gicos que un proceso obtiene en el momento de su
creacion, el proceso padre puede pasar datos de inicializacion (entrada) al proceso hijo. Por ejemplo.
considere un proceso cuya funcién sea mostrar los contenidos de un archivo, por ejemplo img.jpg, en
la pantalla de un terminal. Al crearse, obtendra como entrada de su proceso padre el nombre del
archivo img.jpg y empleara dicho nombre de archivo, lo abrird y mostrara el contenido. También
puede recibir el nombre del dispositivo de salida. Algunos sistemas operativo s pasan recursos a los
procesos hijo. En un sistema asi, el proceso nuevo puede obtener como entrada dos archivos abiertos,
img.jpg vy el dispositivo terminal, y simplemente transferir los datos entre ellos.

Cuando un proceso crea otro proceso nuevo, existen dos posibilidades en términos de ejecucion:

1. El padre continla ejecutandose concurrentemente con su hijo.
2. El padre espera hasta que alguno o todos los hijos han terminado de ejecutarse.

También existen dos posibilidades en funcidn del espacio de direcciones del nuevo proceso:

1. El proceso hijo es un duplicado del proceso padre (usa el mismo programa y los mismos datos
que el padre).
2. El proceso hijo carga un nuevo programa.

Wiki Sistemas - http://wiki.educabit.ar/

Last update: 2025/09/11 22:48 so_procplani http://wiki.educabit.ar/doku.php?id=so_procplani

Para ilustrar estas diferencias, consideremos en primer lugar el sistema operativo UNIX. En UNIX,
cada proceso se identifica mediante su identificador de proceso, que es un entero univoco. Puede
crearse un proceso nuevo mediante la llamada al sistema fork (). El nuevo proceso consta de una
copia del espacio de direcciones del proceso original. Este mecanismo permite al proceso padre
comunicarse facilmente con su proceso hijo. Ambos procesos (padre e hijo) contindan la ejecucion en
la instruccién que sigue a fork (), con una diferencia: el cédigo de retorno para fork () es cero en el
caso del proceso nuevo (hijo), mientras que al padre se le devuelve el identificador de proceso
(distinto de cero) del hijo.

Normalmente, uno de los dos procesos utiliza la llamada al sistema exec () después de una llamada
al sistema fork (), con el fin de sustituir el espacio de memoria del proceso con un nuevo programa.
La llamada al sistema exec () carga un archivo binario en memoria (destruyendo la imagen en
memoria del programa que contiene la llamada al sistema exec ()) e inicia su ejecucion. De esta
manera, los dos procesos pueden comunicarse y seguir luego caminos separados, El padre puede
crear mas hijos, o, si no tiene nada que hacer mientras se ejecuta el hijo, puede ejecutar una llamada
al sistema wait () para auto-excluirse de la cola de procesos preparados hasta que el proceso hijo se
complete.

Terminacion de procesos

Un proceso termina cuando ejecuta su Ultima instruccion y pide al sistema operativo que lo elimine
usando la llamada al sistema exit () . En este momento, el proceso puede devolver un valor de
estado (normalmente, un entero) a su proceso padre (a través de la llamada al sistema wait()). El
sistema operativo libera la asignacion de todos los recursos del proceso, incluyendo las memorias
fisica y virtual, los archivos abiertos y los buferes de E/S.

La terminacién puede producirse también en otras circunstancias. Un proceso puede causar la
terminacién de otro proceso a través de la adecuada llamada al sistema (por ejemplo,
TerminateProcess en Win32). Normalmente, dicha llamada al sistema sélo puede ser invocada por el
padre del proceso-que se va a terminar. En caso contrario, los usuarios podrian terminar
arbitrariamente los trabajos de otros usuarios. Observe que un padre necesita conocer las identidades
de sus hijos. Por tanto, cuando un proceso crea un proceso nuevo, se pasa al padre la identidad del
proceso que se acaba de crear.

Un padre puede terminar la ejecucién de uno de sus hijos por diversas razones, como por ejemplo, las
siguientes:

¢ El proceso hijo ha excedido el uso de algunos de los recursos que se le han asignado. Para
determinar si tal cosa ha ocurrido, el padre debe disponer de un mecanismo para inspeccionar
el estado de sus hijos.

¢ La tarea asignada al proceso hijo ya no es necesaria.

 El padre abandona el sistema, y el sistema operativo no permite que un proceso hijo continde si
su padre ya ha terminado.

Algunos sistemas, incluyendo VMS, no permiten que un hijo siga existiendo si su proceso padre se ha
completado. En tales sistemas, si un proceso termina (sea normal o anormalmente), entonces todos
sus hijos también deben terminarse. Este fendmeno, conocido como terminacién en cascada,
normalmente lo inicia el sistema operativo.

Para ilustrar la ejecucién y terminacién de procesos, considere que, en UNIX, podemos terminar un
proceso usando la llamada al sistema exit (); su proceso padre puede esperar a la terminacién del

http://wiki.educabit.ar/ Printed on 2026/02/11 23:26

2026/02/11 23:26 5/5 Planificadores

proceso hijo usando la llamada al sistema wait (). La llamada al sistema wait () devuelve el
identificador de un proceso hijo completado, con el fin de que el padre puede saber cudl de sus
muchos hijos ha terminado. Sin embargo, si el proceso padre se ha completado, a todos sus procesos
hijo se les asigna el proceso init como su nuevo padre. Por tanto, los hijos todavia tienen un padre al
que proporcionar su estado y sus estadisticas de ejecucién.

From:
http://wiki.educabit.ar/ - Wiki Sistemas

EIEI

.:l_h._ 1

Permanent link:
http://wiki.educabit.ar/doku.php?id=so_procplani

Last update: 2025/09/11 22:48

Wiki Sistemas - http://wiki.educabit.ar/

http://wiki.educabit.ar/
http://wiki.educabit.ar/doku.php?id=so_procplani

	Planificadores
	Cambio de contexto
	Operaciones sobre los procesos
	Creación de procesos
	Terminación de procesos

