
2026/02/12 03:45 1/6 Representación de números reales

Wiki Sistemas - http://wiki.educabit.ar/

Representación de números reales

Ya vimos en clases anteriores cómo se pueden representar números enteros y operar con ellos
usando una cantidad fija de bits. En muchas aplicaciones es necesario representar números con
decimales, números muy grandes que caen fuera del rango de representación de números enteros
del procesador, o números muy cercanos a cero.

Representación de Punto Fijo

De la misma manera que podemos representar cierto rango de números enteros usando una cantidad
fija de dígitos, es posible fijar además una cantidad de esos dígitos para representar la parte
fraccionaria.

De esta manera podríamos representar un subconjunto de los números reales usando, por ejemplo, 8
dígitos, de los cuales 2 dígitos representan la parte fraccionaria. Luego los dígitos almacenados

12345678

representarían el valor 123456,78.

Es común usar estos tipos de datos para almacenar valores monetarios, evitando problemas de
conversión de base y fijando la precisión. Por ejemplo el standard SQL define el tipo de datos
DECIMAL(precision, escala), donde precision indica la cantidad de dígitos decimales (en base 10) y
escala indica cuántos de ellos corresponden a la parte fraccionaria.

Sin embargo esta notación no es eficiente al momento de operar con números de magnitudes muy
distintas, ya que requiere extender la precisión del resultado para no introducir errores por pérdida de
dígitos significativos.

Notación científica

Una forma de representar números muy grandes, o muy pequeños de manera compacta es la
notación científica. En vez de enumerar todos los dígitos que forman el número, éste se expresa como
un valor multiplicado por una potencia de 10. Algunos ejemplos:

1,4959787 × 1011 m Es la distancia promedio de la tierra al sol
2,75 × 10-8 m Diámetro de una molécula de agua
6,02 × 1023 Cantidad de moléculas en un mol de una substancia (número de Avogadro)

De esta manera se pueden expresar números muy grandes o muy pequeños con una cantidad
limitada de dígitos significativos, ya que la magnitud del número está dada por el exponente.

En general un número expresado en notación científica es de la forma +/- m × 10e donde m, llamado
mantisa o significante, es un número real mayor o igual a uno y menor a 10, y el exponente e es un
número entero.

Last update: 2025/09/11 22:48 punto_flotante http://wiki.educabit.ar/doku.php?id=punto_flotante

http://wiki.educabit.ar/ Printed on 2026/02/12 03:45

Representación de Punto Flotante

La representación de números de punto flotante usa un esquema similar a la notación científica para
representar números reales, definiendo una cantidad de dígitos para la mantisa y para el exponente.

Históricamente las computadoras implementaron este tipo de datos de distintas maneras,
dificultando la transmisión de datos y la portabilidad de los algoritmos. Para corregir esta situación, el
IEEE (Institute of Electrical and Electronics Engineers) elaboró un standard para normalizar la
representación y la operación con datos de punto flotante. Al respetar el standard IEEE-754 los
fabricantes de hardware y software pueden garantizar que representan los datos de la misma
manera, con operaciones que funcionan correctamente.

Standard IEEE-754

Inicialmente el standard IEEE-754 definía tres formatos de punto flotante binario, que difieren
básicamente en la cantidad de bits que utilizan para el exponente y la mantisa.

Signo Exponente Mantisa Total bits
Precisión Simple 1 bit 8 bits 23 bits 32
Precisión Doble 1 bit 11 bits 52 bits 64
Precisión Extendida 1 bit 15 bits 63 bits 80

Los formatos de precisión simple y precisión doble corresponden a los tipos de datos float y
double de los lenguajes C, C++ y java. El formato de precisión extendida es usado internamente por
las unidades de punto flotante (FPU) para reducir el error introducido por la representación.

En este curso nos enfocaremos simplemente en la codificación y decodificación de números de punto
flotante de Precisión Simple (32 bits).

Números normalizados

Dado que se trata de representaciones binarias, partiremos de la expresión binaria normalizada de un
número real, es decir el número debe estar expresado de la siguiente manera:

x = (s) 1,m × 2e

Donde s representa el signo, m representa los dígitos de la parte fraccionaria, y el producto por 2e es
la operación necesaria para que el valor normalizado sea igual al número original. Notar que el
número debe tener un solo dígito distinto de cero en la parte entera. Esto implica que el cero no es un
número normalizado, sino que tiene una representación especial.

Por ejemplo el número no normalizado 10101 es igual al valor normalizado 1,0101 × 24.

Consideraremos mantisa solamente a los dígitos binarios de la parte fraccionaria del número
normalizado, asumiendo que la parte entera siempre vale 1.

El signo del número completo se codifica con un bit de la siguiente manera
s = 0: positivo

2026/02/12 03:45 3/6 Representación de números reales

Wiki Sistemas - http://wiki.educabit.ar/

s = 1: negativo
El exponente se almacena como un número entero en exceso-n. La representación exceso-n
permite almacenar números enteros como valores positivos, sumando una constante al valor
original. En el caso de precisión simple, el exponente se almacena en exceso-127 (es decir,
se le suma 127 y se almacena como un número binario positivo).
En la mantisa se almacenan solamente los dígitos de la parte fraccionaria del número
normalizado

Normalmente al operar con este tipo de datos estamos trabajando con números normalizados.

Valores especiales

Dado que la representación de punto flotante usa una cantidad acotada de bits, es imposible que
pueda representar todos los números reales. En caso de que un número tenga demasiados dígitos
significativos para ser representado exactamente, se utilizará la representación de punto flotante más
cercana (Hay distintas formas de redondeo).

Las operaciones que produzcan valores demasiado grandes (overflow) se representan con el valor
infinito. En caso de que el resultado sea demasiado pequeño (underflow), el resultado será un
número desnormalizado, o directamente cero. Además hay operaciones cuyo resultado no está

definido o no es un número real, por ejemplo: , 1/0, ln(-1). Estos casos estarán representados
por el valor NaN (Not a Number).

Valor PF Exponente Mantisa
+/- cero Exponente formado solo por ceros Mantisa solo contiene ceros
Números desnormalizados Exponente formado solo por ceros Mantisa distinta de cero
+/- infinito Exponente formado solo por unos Mantisa solo contiene ceros
NaN Exponente formado solo por unos Mantisa distinta de cero

De aquí surge que los exponentes formados solo por ceros y solo por unos no pueden utilizarse para
representar números normalizados. En precisión simple, el menor exponente posible será -126 y el
mayor 127.

Otra particularidad es que hay dos maneras de representar el cero, dependiendo del bit de signo: +0
y -0.

Codificación de un número en Punto Flotante de precisión Simple

De acuerdo con lo anterior, un número de punto flotante de precisión simple se codifica en 32 bits
siguiendo el siguiente esquema:

signo (1 bit) exponente (8 bits) mantisa normalizada (23 bits)

Veamos cómo codificar un número cualquiera en Punto Flotante de precisión simple, por ejemplo:
534,5.

En primer lugar debemos expresarlo como un número binario normalizado. Aplicando divisiones1.
sucesivas y multiplicaciones sucesivas por 2 obtenemos que

Last update: 2025/09/11 22:48 punto_flotante http://wiki.educabit.ar/doku.php?id=punto_flotante

http://wiki.educabit.ar/ Printed on 2026/02/12 03:45

534,510 = 1000010110,12

Como la parte entera es mayor a 1, debemos normalizarlo. En este caso alcanza con dividirlo 91.
veces por 2 para que solo quede un uno en la parte entera. Luego 534,510 = 1000010110,12 =
1,00001011012 × 29. Notar que si efectuamos el producto obtendremos el número original.
Como el número es positivo, el bit de signo será s = 0.2.
Codificamos el exponente 9 en exceso-127: 9 + 127 = 136 = 1000100023.
Finalmente en los 23 bits de la mantisa se almacenan los dígitos de la parte fraccionaria,4.
completando con ceros a la derecha en caso de que sean menos de 23. La representación
binaria en punto flotante de 32 bits quedará así:

Dado que la representación de PF de 32 bits ocupa 4 bytes, es frecuente expresar el contenido de
estos 4 bytes de manera más compacta en hexadecimal, de la misma manera que se visualiza el
contenido de la memoria en hexadecimal.

En este caso los bits 0100 0100 0000 0101 1010 0000 0000 0000 se pueden expresar en
hexadecimal de la siguiente manera: 44 05 A0 00

Decodificar un número de Punto Flotante de precisión simple

Suponiendo que obtenemos de la memoria 4 bytes que contienen un número real representado en
punto flotante de precisión simple, podemos extraer el número que contiene siguiendo los pasos
inversos.

Si el contenido de estos cuatro bytes expresado en hexadecimal es

BE 40 00 00

Debemos pasarlo a binario para poder extraer el signo, el exponente y la mantisa:

1011 1110 0100 0000 0000 0000 0000 0000

Separando las partes quedará 1.
Como s=1, vemos que el número es negativo.2.
.
Como el exponente está codificado en exceso 127, podemos restarle 127 para obtener el3.
exponente real:

011111002 = 64 + 32 + 16 + 8 + 4 = 1241.
e = 124 - 127 = -32.
.

Podemos expresar el número binario normalizado reemplazando cada una de las partes4.
f = (s) 1,m × 2e = -1,100000000000000000000002 × 2-31.
Desnormalizándolo queda: f = -0,001122.
.

Finalmente el valor del número de punto flotante expresado en decimal será5.

2026/02/12 03:45 5/6 Representación de números reales

Wiki Sistemas - http://wiki.educabit.ar/

f = -0,00112 = -(1/8 + 1/16) = -(0,125 + 0,0625) = -0,187510

Consideraciones sobre la operación con números de punto flotante

Al tratarse de una representación finita de un conjunto infinito, hay que tener en cuenta que tanto la
representación de números como las operaciones de punto flotante involucran un error en la mayoría
de los casos. Esto puede provocar situaciones como la siguiente, por ejemplo en Python:

 >>> 0.1 + 0.1 + 0.1 == 0.3
 False

W8GBE6sdVuQ

Notar que la representación binaria de 0,1 requiere infinitos dígitos, por lo que el valor representado
como 0.1 no es exactamente 0,1. Podemos ver la diferencia si mostramos el valor 0.1 con una
cantidad grande de dígitos en la parte fraccionaria:

 >>> '{0:.20g}'.format(0.1)
 '0.10000000000000000555'

Esto sugiere que en muchos casos será un error comparar números de punto flotante usando la
igualdad.

Además del error involucrado en la representación, cada operación de punto flotante introduce un
error que es inevitable. Hay situaciones donde el orden en que se realicen las operaciones puede
amplificar o disminuir el error. Por ejemplo restar dos números muy parecidos puede cancelar dígitos
significativos magnificando el error.

eBkJilWMYvU Normalización en decimal

ijBLqXhq9RY Punto Flotante

Referencias

Tanenbaum - Apéndice B

— Carlos López Holtmann

(181)

mailto:charlylh@gmail.com

Last update: 2025/09/11 22:48 punto_flotante http://wiki.educabit.ar/doku.php?id=punto_flotante

http://wiki.educabit.ar/ Printed on 2026/02/12 03:45

From:
http://wiki.educabit.ar/ - Wiki Sistemas

Permanent link:
http://wiki.educabit.ar/doku.php?id=punto_flotante

Last update: 2025/09/11 22:48

http://wiki.educabit.ar/
http://wiki.educabit.ar/doku.php?id=punto_flotante

	[Representación de números reales]
	Representación de números reales
	Representación de Punto Fijo
	Notación científica
	Representación de Punto Flotante
	Standard IEEE-754
	Números normalizados
	Valores especiales

	Codificación de un número en Punto Flotante de precisión Simple
	Decodificar un número de Punto Flotante de precisión simple
	Consideraciones sobre la operación con números de punto flotante
	Referencias

