2026/02/11 23:23 1/5 Creacion de Procesos: Fork

Creacion de Procesos: Fork

Introduccion: Hilos, tareas

N
LN)
Antes de comenzar con fork, repasemos un poco procesos € hilos ~= . Dos conceptos muy
parecidos y relacionados, pero con un conjunto de pequefas diferencias.

Si queremos que nuestro programa empiece a ejecutar varias cosas “a la vez”, tenemos dos
opciones. Por un lado podemos crear un nuevo proceso y por otro lado podemos crear uno o varios
hilos de ejecucion (threads).

En realidad una computadora, salvo que tenga varias CPU’s, no ejecutara varias tareas a la vez esto
se refiere a que el sistema operativo, es este caso Linux, ira ejecutando los threads segun la politica
del mismo, siendo lo mas usual ejecutar porciones de cédigo de procesos alternadamente
(multitarea), haciendolo tan rapido que dan la sensacién de simultaneidad.

Procesos

Un proceso es un concepto manejado por el sistema operativo que consiste en el conjunto formado
por:

Las instrucciones de un programa destinadas a ser ejecutadas por el procesador.

Su estado de ejecucion en un momento dado, esto es, los valores de los registros de la CPU
para dicho programa.

Su memoria de trabajo, es decir, la memoria que ha reservado y sus contenidos.

Otra informacién que permite al sistema operativo su planificacion.

e etc

En Linux, que como todos sabemos es multitarea (sistema operativo multithread), se pueden estar
ejecutando distintas acciones a la vez, y cada accidn es un proceso que consta de uno o mas hilos,
memoria de trabajo compartida por todos los hilos e informacién de planificacién. Cada hilo consta de
instrucciones y estado de ejecucion.

Cuando ejecutamos un comando en el shell, sus instrucciones se copian en memoria RAM (i repasar
ciclo de instruccién visto en orga!) del sistema para ser ejecutadas. Cuando las
instrucciones se ejecutaron en su totalidad, el proceso es borrado de la memoria del sistema,
dejandola libre para que mas programas se puedan ejecutar a la vez.

Los procesos son creados y destruidos por el sistema operativo. El mecanismo por el cual un proceso
crea otro proceso se denomina bifurcacién (fork). Los nuevos procesos son independientes y no
comparten memoria (es decir, informacién) con el proceso que los ha creado.

En definitiva, es posible crear tanto hilos como procesos. La diferencia estriba en que un proceso
solamente puede crear hilos para si mismo y en que dichos hilos comparten toda la memoria
reservada para el proceso.

Wiki Sistemas - http://wiki.educabit.ar/

Last update: 2025/09/11 22:48 proc_fork http://wiki.educabit.ar/doku.php?id=proc_fork

Threads

Los hilos son similares a los procesos ya que ambos representan una secuencia simple de
instrucciones ejecutada en “paralelo” con otras secuencias. Los hilos son una forma de dividir un
programa en dos 0 mas tareas que corren simultdneamente, compitiendo, en algunos casos, por la
CPU.

La diferencia mas significativa entre los procesos y los hilos, es que los primeros son tipicamente
independientes, llevan bastante informacién de estados, e interactian sélo a través de mecanismos
de comunicacién dados por el sistema.

Por otra parte, los hilos generalmente comparten la memoria, es decir, acceden a las mismas
variables globales o dinamicas, por lo que no necesitan costosos mecanismos de comunicacién para

sincronizarse (IPC &m)). Por ejemplo un hilo podria encarguese de la interfaz gréfica (iconos,
botones, ventanas), mientras que otro hace una larga operacién internamente. De esta manera el
programa responde mas agilmente a la interaccién con el usuario.

En sistemas operativos que proveen facilidades para el uso de hilos, es mas rapido cambiar de un hilo
a otro dentro del mismo proceso, que cambiar de un proceso a otro (recordar qué es Context switch).

Es posible que los hilos requieran de operaciones atdmicas para impedir que los datos comunes sean

cambiados o leidos mientras estén siendo modificados. El descuido de esto puede generar

o0
“estancamiento” mmm... me suena a algo que ya vimos W .

La tabla de abajo resume algunas diferencias entre procesos e hilos,

Procesos Threads
Administrador por el SO Manejados por los procesos
Independientes de otros procesos Relacionados con otros hilos del mismo proceso
Memoria privada, se necesitan mecanismos de Memoria compartida con el resto de los hilos
comunicaciéon para compartir informacién qgue forman el proceso
code data files

registers ||| registers ||| registers

stack stack stack

«+—— thread

multithreaded process

http://wiki.educabit.ar/ Printed on 2026/02/11 23:23

2026/02/11 23:23 3/5 Creacion de Procesos: Fork

Creacion de Procesos: Fork y clone

A la hora de crear procesos linux provee de dos funciones para dicho cometido, la funcién clone() y la
funcion fork(). Ambas crean un nuevo proceso a partir del proceso padre pero de una manera distinta.

Cuando utilizamos la llamada al sistema con fork(), el proceso hijo creado es una copia exacta del
padre (salvo por el PID y la memoria que ocupa). Al proceso hijo se le facilita una copia de las
variables del proceso padre y de los descriptores de archivo. Es importante destacar que las variables
del proceso hijo son una copia de las del padre (no se refieren fisicamente a la misma variable), por lo
gue modificar una variable en uno de los procesos no se refleja en el otro.

La llamada al sistema clone es mucho mas genérica y flexible que el fork, ya que nos permite definir
qué van a compartir los procesos padre e hijo.

Las llamadas al sistema fork y clone tienen la misma funcionalidad, pero distintas caracteristicas:

Fork: En el momento de la llamada a fork el proceso hijo:

Es una copia exacta del padre excepto el PID.

Tiene las mismas variables y archivos abiertos.

Las variables son independientes (padre e hijo tienen distintas memorias).
Los archivos son compartidos (heredan el descriptor).

Clone: Permite especificar qué queremos que compartan padre e hijo.

Espacio de direccionamiento

Informacidn de control del sistema de archivos (file system)
Descriptores de archivos abiertos.

Gestores de senales o PID.

Fork Clone

Permite especificar qué
comparten padre e hijo

El hijo es una copia exacta del padre (salvo por el PID y memoria)

Ambos procesos disponen de las mismas variables, aunque éstas son
independientes

El hijo hereda los descriptores de archivo del padre

Wiki Sistemas - http://wiki.educabit.ar/

Last update: 2025/09/11 22:48 proc_fork http://wiki.educabit.ar/doku.php?id=proc_fork

Proceso Padre

main)
FORK ()

fork ()
Task sStruct Padre
| PID del padre Var A Fichero B open |

Task struct Hijo
| PID del hijo Copia var A Fichero B open I

CLOMNE(}

Task_struct padre
|PI|’.‘| del padre Var A Fichero B open |

Procaso Hijo

Task_struct Hijo main ()

|PI|:| del padre WVar A Picherc E open |

fork()

En la tabla podemos ver como trabajan las llamadas a fork y clone. A la derecha, en vertical, se
muestra una representacion de la memoria. Tanto al hacer un fork como un clone en su modalidad
por defecto (se puede cambiar el comportamiento de clone con una serie de flags), el proceso padre
se copia en la zona de memoria del proceso hijo.

En el fork() el hijo creado obtiene una copia de todos los campos del task_struct del padre y su propio
identificador. En el clone el hijo en principio dispondra de exactamente los mismos campos del
task_struct del padre y sélo realizara una copia de estos en caso de modificar alguno de ellos. Si esto
ocurre debe asignarsele al hijo su propio PID.

Recomiendo leer libro: El lenguaje de programacién C Brian Kernighan - Dennis Ritchie)

EL
LENGUAJE DE
PROGRAMACION

C

A &S MO A,
Bt b LT

SR

Fork

Los procesos en Linux tienen una estructura jerarquica, es decir, un proceso padre puede crear un
nuevo proceso hijo y asi sucesivamente. La forma en que un proceso inicia a otro es mediante una

[lamada a fork o clone.

Cuando se hace un fork, se crea un nuevo task_struct a partir del task_struct del proceso padre. Al
hijo se le asigna un PID propio y se le copian las variables del proceso padre. Sin embargo, vemos
como en la llamada a clone el task_struct del proceso padre se copia y se deja tal cual, por lo que el
hijo tendra el mismo PID que el proceso padre y obtendra (fisicamente) las mismas variables que el

proceso padre.

http://wiki.educabit.ar/ Printed on 2026/02/11 23:23

http://wiki.educabit.ar/lib/exe/detail.php?id=proc_fork&media=el_lenguaje_de_programacion_c.jpg

2026/02/11 23:23 5/5 Creacion de Procesos: Fork

El proceso hijo creado es una copia del padre (mismas instrucciones, misma memoria). Lo normal es

que a continuacién el hijo ejecute una llamada al sistema exec (Nosotros no lo hicimos, no pasa nada

-
LN J

0si? "=). En cuanto al valor devuelto por el fork, se trata de un valor numérico que depende tanto
de si el fork se ha ejecutado correctamente como de si nos encontramos en el proceso padre o en el
hijo.

« Si se produce algun error en la ejecucion del fork, el valor devuelto es -1

* Si no se produce ningun error y nos encontramos en el proceso hijo, el fork devuelve un 0.

* Si no se produce ningun error y nos encontramos en el proceso padre, el fork devuelve el PID
asignado al proceso hijo.

N
o o
Ala variable errno = (La variable global errno se utilizara para obtener el
valor de error que se decodificard.) se le asigna un cédigo de error determinado cada vez
que se produce algun problema. Una llamada a fork (o clone) puede provocar dos tipos de problemas:
bien se ha alcanzado el maximo nimero de procesos, o bien no queda suficiente memoria para crear

el nuevo proceso. La siguiente tabla muestra los valores que obtiene la variable errno en funcion del
tipo de error producido.

Error Significado
EAGAIN |Se ha llegado al nUmero maximo de procesos del usuario actual o del sistema
EANOMEM | EIl kernel no ha podido asignar suficiente memoria para crear un nuevo proceso

Volver

¢
— Mariano Vargas 4”

From:
http://wiki.educabit.ar/ - Wiki Sistemas

Permanent link:
http://wiki.educabit.ar/doku.php?id=proc_fork

Last update: 2025/09/11 22:48

Wiki Sistemas - http://wiki.educabit.ar/

http://wiki.educabit.ar/doku.php?id=so
mailto:mariano.vargas@gmail.com
http://wiki.educabit.ar/
http://wiki.educabit.ar/doku.php?id=proc_fork

	[Creación de Procesos: Fork]
	Creación de Procesos: Fork
	Introducción: Hilos, tareas
	Procesos
	Threads
	Creación de Procesos: Fork y clone
	Fork

