2026/02/11 23:28 1/4 Subrutinas/Funciones

Subrutinas/Funciones

Subrutinas
Un aspecto muy peculiar de la arquitectura ARM es que las llamadas a subrutinas se hacen mediante
un sencillo afadido a la instruccién de salto B (Branch).

Sintaxis:
B{L} {<cond>} <direccién destino>

Donde:

L setea en 1 el bit 24 (el bit L) en la instruccién. Con esta opcidn, la instruccién almacena una
direccidn de retorno en el registo de link LR (R14). Si no se pone el sufijo L, la instruccion
simplemente salta sin almacenar ninguna direccién.

<cond> Es la condicion para que se ejecute la instruccion.

<direccion_destino> Especifica la direccién a donde hay que saltar. Puede ser una etiqueta, pero se
codifica en 24 bits. La direccion de destino se calcula de la siguiente manera:

1. Extender a 30 bits el signo de los 24 bits en complemento A dos (signed immed_24).
2. Hacer un shift a izquierda de dos bits para formar un valor de 32 bits (SignExtend_30).
3. El nuevo PC es: PC = PC + (SignExtend_30(signed_immed_24) « 2)

Si agregamos el sufijo L, la instruccion B es BL y se llama (Branch and Link), y se usa para llamar a
una subrutina, mediante un salto a la subrutina y escribiendo en el registro LR (R14) la direccion de la
siguiente instruccién.

main : mov rl, #1
mov r2, #2
bl subrut
mov r4, #4 /* Siguiente instruccién */

subrut : mov r3, #3
bx lr

La instruccion BL se usa en combinacidn con la instruccion BX (Branch and Exchange).

Sintaxis:
BX{<cond>} <Rm>

Donde:

Wiki Sistemas - http://wiki.educabit.ar/



Last update: 2025/09/11 22:48 arm_saltos http://wiki.educabit.ar/doku.php?id=arm_saltos

<cond> Es la condicion para que se ejecute la instruccion.
<Rm> Registro que contiene el valor de la direccion de destino del salto

En particular, en el retorno de una subrutina se usa Rm=LR. El retorno se logra copiando el registro
LR (R14) al PC (Program Counter).

Continuemos analizando el ejemplo de subrutina anterior

main : mov rl, #1
mov r2, #2
bl subrut
mov r4, #4 /* Siguiente instruccién */

subrut : mov r3, #3
bx lr

Si seguimos el flujo del programa primero cargamos rl a 1, luego r2 a 2 y lo siguiente que hay es una
llamada a la subrutina. En dicha llamada el procesador carga en Ir la direccién de la siguiente
instruccién “mov r4, #4” y salta a la etiqueta subrut. Se ejecuta el “mov r3, #3” de la subrutina y
después “bx Ir” que vendria a ser la instruccién de retorno. Es decir, salimos de la subrutina
retomando el flujo del programa principal, ejecutando “mov r4, #4".

La convencion AAPCS nos servira para trabajar con las subrutinas de manera estandarizada:

Convencion AAPCS

Podriamos seguir nuestras propias reglas, pero si queremos interactuar con las librerias del sistema,
tanto para llamar a funciones como para crear nuestras propias funciones y que éstas sean invocadas
desde un lenguaje de alto nivel, tenemos que seguir una serie de pautas, lo que denominamos AAPCS
(Procedure Call Standard for the ARM Architecture).

1. Parametros input: Podemos usar hasta cuatro registros (desde r0 hasta r3) para pasar
parametros y hasta dos (rO y rl1) para devolver el resultado.

2. Parametros output: No estamos obligados a usarlos todos, si por ejemplo la subrutina sélo
usa dos parametros de tipo int con rO y rl nos basta. Lo mismo pasa con el resultado, podemos
no devolver nada (tipo void), devolver sélo r0 (tipo int 6 un puntero a una estructura mas
compleja), o bien devolver r1:r0 cuando necesitemos enteros de 64 bits (tipo long long).

3. Alineacion de la memoria: Los valores estan alineados a 32 bits (tamafio de un registro),
salvo en el caso de que algun pardametro sea mas grande, en cuyo caso alinearemos a 64 bits.
La unidad minima son 32 bits, por ejemplo si queremos pasar un char por valor, extendemos de
byte a word rellenando con ceros los 3 bytes mas significativos. Lo mismo ocurre con los
enteros de 64 bits, pero en el momento en que haya un sélo parametro de este tipo, todos los
demas se alinean a 64 bits.

4. Preservar registros: Es muy importante preservar el resto de registros (de r4 en adelante
incluyendo Ir). La Unica excepcidn es el registro r12 que podemos cambiar a nuestro antojo.
Normalmente se emplea la pila para almacenarlos al comienzo de la subrutina y restaurarlos a
la salida de ésta. Podemos usar como registros temporales (no necesitan ser preservados) los
registros desde r0 hasta r3 que no se hayan usado para pasar parametros.

5. Alineacion del stack: La pila debe estar alineada a 64 bits, esto quiere decir que de usarla

http://wiki.educabit.ar/ Printed on 2026/02/11 23:28



2026/02/11 23:28 3/4 Subrutinas/Funciones

para preservar registros, debemos reservar un numero par de ellos. Si sélo necesitamos
preservar un nimero impar de ellos, afladimos un registro mas a la lista dentro del push,
aungue no necesite ser preservado. Ademas de pasar parametros y preservar registros,
también podemos usar la pila para almacenar variables locales, siempre y cuando cumplamos
la regla de alinear a 64 bits y equilibremos la pila antes de salir de la funcién.

Cuando programamos no es necesario sequir estas reglas. Es mas, podemos escribir una funcién sin
seqguir la norma incluso si trabajamos bajo Linux, pero no es recomendable ya que no podriamos

Para poder reusar nuestras funciones en otros proyectos es necesario seguir estas reglas. Aunque
cuando programamos en el emulador, 6 en Bare Metal (Programas sin el sistema operativo como
intermediario) podemos no seguir algunas reglas como la alineacion del stack.

Lo mejor para entender estas reglas es con una serie de ejemplos:

Subrutinas en ensamblador llamadas desde ensamblador

En este primer ejemplo crearemos nuestras propias funciones con pasaje de parametros o
argumentos

/* 0Organizacion del Computador UNGS: Programa en ensamblador ARM:

ejer@3funsuma.s

EJEMPLO SIMPLE DE LLAMADO A FUNCION/SUBRUTINA CON PASAJE DE PARAMETROS

RESPETANDO LA CONVENCION AAPCS

En este ejemplo la funcion queda arriba del main

.fnstart - .fnend, esto se usa si la funcion es llamada desde C

Link Register 6 Registro de Enlace. Almacena la direccién de

retorno cuando una instruccién BL 6 BLX ejecuta una 1llamada a una
rutina.

*/
.data
/* Definicion de datos */
@
@
.text @ Defincion de codigo del programa
@ ------------ Cédigo de la funcidn
mifuncion:
.fnstart
add ro,#1 @ lo que hace 1la funcion mifuncion
bx 1r @ salimos de la funcion mifuncion
.fnend
@ ------------- Cédigo del main
.global main @ global, visible en todo el programa
main:
mov r@, #OxB @ RO <-- 11
@ solo paso un parametro ro@
bl mifuncion @ Llamamos a la funcion
mov rl, #OXxA @ Rl <-- 10
mov r2, #0x7 Q R2 <-- 7
@

Wiki Sistemas - http://wiki.educabit.ar/



Last update: 2025/09/11 22:48 arm_saltos http://wiki.educabit.ar/doku.php?id=arm_saltos

mov r7, #1 // Salida al sistema
swi 0 // Salida al sistema operativo

Subrutinas anidadas

En el ejemplo anterior vimos un sencillo esquema que vale para un sélo nivel de subrutinas, es decir,
dentro de subrut no podemos Ilamar a otra subrutina porque sobreescribimos el valor del registro Ir.
La solucién para extender a cualquier nimero de niveles es almacenar el registro Ir en pila con las
instrucciones push y pop.

main : mov rl, #1
mov r2, #2
bl nivell @ No es necesario guardar lr
mov r5, #5 /* Siguiente instruccién */
/* ---- Subrutinas ---- */

nivell : push {lr} @ como esta funcion 1llama a otra
mov r3, #3 @ se guarda 1lr, pq sino se pierde
bl nivel2 @ llama a la funcion anidada
pop {lr} @ restauramos el lr de esta funcion
bx lr
/* ____________ */

nivel2 : mov r4, #4 @ no es necesario guardar lr pq
bx 1r @ es la ultima funcion

Vemos en el dltimo nivel (nivel2) podemos ahorrarnos el tener que almacenar y recuperar Ir en la
pila.

Las instrucciones de salto en la arquitectura ARM abarcan una zona muy extensa, hasta 64 Mb (32 Mb
hacia adelante y otros 32 Mb hacia atras). Este rango esta determinado por los 24 bits para codificar
el destino del salto. En caso de necesitar un salto mayor recurrimos a la misma solucién de la carga
de inmediatos del mov, solo que el registro a cargar es el pc.

ldr pc, =etiqueta

Volver

From:
http://wiki.educabit.ar/ - Wiki Sistemas

Permanent link:
http://wiki.educabit.ar/doku.php?id=arm_saltos

Last update: 2025/09/11 22:48

http://wiki.educabit.ar/ Printed on 2026/02/11 23:28


http://wiki.educabit.ar/doku.php?id=oc_raspi0
http://wiki.educabit.ar/
http://wiki.educabit.ar/doku.php?id=arm_saltos

	Subrutinas/Funciones
	Subrutinas
	Convención AAPCS
	Subrutinas en ensamblador llamadas desde ensamblador
	Subrutinas anidadas


